Deep Matching and Validation Network
نویسندگان
چکیده
Image splicing is a very common image manipulation technique that is sometimes used for malicious purposes. A splicing detection and localization algorithm usually takes an input image and produces a binary decision indicating whether the input image has been manipulated, and also a segmentation mask that corresponds to the spliced region. Most existing splicing detection and localization pipelines suer from two main shortcomings: 1) they use handcraed features that are not robust against subsequent processing (e.g., compression), and 2) each stage of the pipeline is usually optimized independently. In this paper we extend the formulation of the underlying splicing problem to consider two input images, a query image and a potential donor image. Here the task is to estimate the probability that the donor image has been used to splice the query image, and obtain the splicing masks for both the query and donor images. We introduce a novel deep convolutional neural network architecture, called Deep Matching and Validation Network (DMVN), which simultaneously localizes and detects image splicing. e proposed approach does not depend on handcraed features and uses raw input images to create deep learned representations. Furthermore, the DMVN is end-to-end optimized to produce the probability estimates and the segmentation masks. Our extensive experiments demonstrate that this approach outperforms state-of-the-art splicing detection methods by a large margin in terms of both AUC score and speed.
منابع مشابه
An Investigation on the Effects of Optimum Forming Parameters in Hydromechanical Deep Drawing Process Using the Genetic Algorithm
The present research work is concerned with the effects of optimum process variables in elevated temperature hydro-mechanical deep drawing of 5052 aluminum alloy. Punch-workpiece and die-workpiece friction coefficients together with the initial gap between the blank holder and matrix were considered as the process variables which, in optimization terminology, are called design parameters. Since...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA Broadband Low Power CMOS LNA for 3.1–10.6 GHz UWB Receivers
A new approach for designing an ultra wideband (UWB) CMOS low noise amplifier (LNA) is presented. The aim of this design is to achieve a low noise figure, reasonable power gain and low power consumption in 3.1-10.6 GHz. Also, the figure of merit (FOM) is significantly improved at 180nm technology compared to the other state-of-the-art designs. Improved π-network and T-network are used to obt...
متن کاملOptimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملA Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline Simulation; A gas condensate reservoir case study in Iran
Many large oil and gas fields in the most productive world regions happen to be fractured. The exploration and development of these reservoirs is a true challenge for many operators. These difficulties are due to uncertainties in geological fracture properties such as aperture, length, connectivity and intensity distribution. To successfully address these challenges, it is paramount to im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017